I remember my first encounter with Kubernetes. It was 2019, I had a simple Node.js API that worked perfectly in Docker, and my CTO said, "Let's deploy this to our new Kubernetes cluster." Six hours later, I was drowning in YAML files, debugging mysterious pod failures, and questioning every career choice that led me to this moment.
Fast forward to today: I just deployed a 15-microservice application to a Kubernetes cluster in 20 minutes. Not because I became a YAML wizard, but because the container orchestration ecosystem finally grew up. Tools like Helm, ArgoCD, and managed Kubernetes services transformed what used to be a nightmare into something almost... enjoyable.
The Evolution from "Why?" to "How?"
The Container Orchestration Problem
Running containers in production isn't just about docker run
. You need:
- Service discovery: How do containers find each other?
- Load balancing: How do you distribute traffic?
- Scaling: How do you handle traffic spikes?
- Health monitoring: How do you know when things break?
- Rolling updates: How do you deploy without downtime?
- Secret management: How do you handle credentials securely?
- Networking: How do containers communicate across hosts?
The Orchestration Solutions Landscape
Docker Swarm: Simple but limited Apache Mesos: Powerful but complex Kubernetes: Complex but complete Nomad: Simple and flexible ECS/Fargate: AWS-specific but managed
The winner: Kubernetes, not because it's the best at everything, but because it became the standard that everyone builds around.
Kubernetes: The New Operating System
Why Kubernetes Won
Declarative Configuration: Instead of "run this command," you say "I want this state"
# Old way: Imperative commands
docker run -d --name web nginx
docker run -d --name db postgres
# New way: Declarative configuration
apiVersion: apps/v1
kind: Deployment
metadata:
name: web-app
spec:
replicas: 3
selector:
matchLabels:
app: web
template:
metadata:
labels:
app: web
spec:
containers:
- name: web
image: nginx:1.21
ports:
- containerPort: 80
resources:
requests:
memory: "128Mi"
cpu: "100m"
limits:
memory: "256Mi"
cpu: "200m"
Extensible Architecture: Kubernetes isn't just a container orchestrator—it's a platform for building platforms.
Cloud-Native Ecosystem: Every cloud provider, every tool, every service integrates with Kubernetes first.
Modern Kubernetes: The 2025 Reality
What's Changed:
- Managed services: EKS, GKE, AKS handle the complexity
- Better tooling: Helm, Kustomize, ArgoCD simplify deployment
- Service mesh integration: Istio, Linkerd handle networking complexity
- GitOps workflows: Infrastructure as code with automatic synchronization
- Observability: Built-in monitoring, logging, and tracing
The result: You can be productive with Kubernetes without becoming a cluster administrator.
Real-World Kubernetes Architectures
Microservices E-commerce Platform
# Complete e-commerce deployment
apiVersion: v1
kind: Namespace
metadata:
name: ecommerce
---
# Frontend Service
apiVersion: apps/v1
kind: Deployment
metadata:
name: frontend
namespace: ecommerce
spec:
replicas: 3
selector:
matchLabels:
app: frontend
template:
metadata:
labels:
app: frontend
spec:
containers:
- name: frontend
image: ecommerce/frontend:v1.2.0
ports:
- containerPort: 3000
env:
- name: API_URL
value: "http://api-service:8080"
- name: REDIS_URL
value: "redis://redis-service:6379"
resources:
requests:
memory: "256Mi"
cpu: "200m"
limits:
memory: "512Mi"
cpu: "500m"
livenessProbe:
httpGet:
path: /health
port: 3000
initialDelaySeconds: 30
periodSeconds: 10
readinessProbe:
httpGet:
path: /ready
port: 3000
initialDelaySeconds: 5
periodSeconds: 5
---
apiVersion: v1
kind: Service
metadata:
name: frontend-service
namespace: ecommerce
spec:
selector:
app: frontend
ports:
- port: 80
targetPort: 3000
type: LoadBalancer
---
# API Service
apiVersion: apps/v1
kind: Deployment
metadata:
name: api
namespace: ecommerce
spec:
replicas: 5
selector:
matchLabels:
app: api
template:
metadata:
labels:
app: api
spec:
containers:
- name: api
image: ecommerce/api:v2.1.0
ports:
- containerPort: 8080
env:
- name: DATABASE_URL
valueFrom:
secretKeyRef:
name: db-secret
key: url
- name: JWT_SECRET
valueFrom:
secretKeyRef:
name: jwt-secret
key: secret
resources:
requests:
memory: "512Mi"
cpu: "300m"
limits:
memory: "1Gi"
cpu: "800m"
---
# Database
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: postgres
namespace: ecommerce
spec:
serviceName: postgres
replicas: 1
selector:
matchLabels:
app: postgres
template:
metadata:
labels:
app: postgres
spec:
containers:
- name: postgres
image: postgres:14
env:
- name: POSTGRES_DB
value: ecommerce
- name: POSTGRES_USER
value: admin
- name: POSTGRES_PASSWORD
valueFrom:
secretKeyRef:
name: db-secret
key: password
ports:
- containerPort: 5432
volumeMounts:
- name: postgres-storage
mountPath: /var/lib/postgresql/data
volumeClaimTemplates:
- metadata:
name: postgres-storage
spec:
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: 20Gi
---
# Horizontal Pod Autoscaler
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: api-hpa
namespace: ecommerce
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: api
minReplicas: 3
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
The Helm Revolution
Before Helm:
- Dozens of YAML files to manage
- Environment-specific configurations scattered everywhere
- No versioning or rollback capabilities
- Copy-paste configuration management
With Helm:
# values.yaml
frontend:
image:
repository: ecommerce/frontend
tag: "v1.2.0"
replicas: 3
service:
type: LoadBalancer
port: 80
api:
image:
repository: ecommerce/api
tag: "v2.1.0"
replicas: 5
autoscaling:
enabled: true
minReplicas: 3
maxReplicas: 20
targetCPUUtilization: 70
database:
enabled: true
storage: 20Gi
ingress:
enabled: true
hostname: shop.example.com
tls: true
# Deploy entire application
helm install ecommerce ./ecommerce-chart \
--values values.prod.yaml \
--namespace ecommerce \
--create-namespace
# Upgrade with zero downtime
helm upgrade ecommerce ./ecommerce-chart \
--values values.prod.yaml \
--set api.image.tag=v2.2.0
# Rollback if something goes wrong
helm rollback ecommerce 1
GitOps: The Deployment Revolution
Traditional Deployment vs. GitOps
Traditional CI/CD:
- Developer pushes code
- CI builds and tests
- CD deploys to environment
- Manual verification and approval
GitOps Workflow:
- Developer pushes code
- CI builds and tests
- CI updates deployment manifests in Git
- ArgoCD automatically syncs cluster state with Git
- Self-healing: if someone manually changes something, it gets reverted
# ArgoCD Application
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
name: ecommerce-production
namespace: argocd
spec:
project: default
source:
repoURL: https://github.com/company/ecommerce-k8s
targetRevision: main
path: environments/production
destination:
server: https://kubernetes.default.svc
namespace: ecommerce-prod
syncPolicy:
automated:
prune: true
selfHeal: true
syncOptions:
- CreateNamespace=true
revisionHistoryLimit: 10
The GitOps Benefits
Declarative Everything:
- Infrastructure state is version controlled
- Changes are auditable
- Rollbacks are just Git reverts
Security:
- No CI/CD system needs cluster access
- All changes go through Git review process
- Separation of concerns between build and deploy
Reliability:
- Self-healing systems
- Drift detection and correction
- Consistent environments
Service Mesh: Networking Made Simple(r)
The Microservices Networking Problem
When you have 50 microservices, you need:
- Service-to-service authentication
- Traffic encryption
- Load balancing strategies
- Circuit breaking
- Observability and tracing
- Traffic routing and splitting
Istio Service Mesh Solution
# Automatic sidecar injection
apiVersion: v1
kind: Namespace
metadata:
name: ecommerce
labels:
istio-injection: enabled
---
# Traffic management
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
name: api-service
spec:
http:
- match:
- headers:
canary:
exact: "true"
route:
- destination:
host: api-service
subset: v2
weight: 100
- route:
- destination:
host: api-service
subset: v1
weight: 90
- destination:
host: api-service
subset: v2
weight: 10
---
# Security policies
apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
name: default
namespace: ecommerce
spec:
mtls:
mode: STRICT
---
# Observability
apiVersion: telemetry.istio.io/v1alpha1
kind: Telemetry
metadata:
name: metrics
spec:
metrics:
- providers:
- name: prometheus
- overrides:
- match:
metric: ALL_METRICS
tagOverrides:
destination_service_name:
value: "%{destination_service_name | 'unknown'}"
What this gives you:
- Automatic mTLS: All service-to-service communication encrypted
- Traffic management: Canary deployments, A/B testing, circuit breaking
- Observability: Metrics, logs, and traces for every request
- Security: Zero-trust networking with policy enforcement
The Managed Kubernetes Reality
AWS EKS: Production-Ready Kubernetes
# Terraform for EKS cluster
resource "aws_eks_cluster" "main" {
name = "production-cluster"
role_arn = aws_iam_role.cluster.arn
version = "1.28"
vpc_config {
subnet_ids = aws_subnet.private[*].id
endpoint_private_access = true
endpoint_public_access = true
public_access_cidrs = ["0.0.0.0/0"]
}
encryption_config {
provider {
key_arn = aws_kms_key.eks.arn
}
resources = ["secrets"]
}
enabled_cluster_log_types = [
"api",
"audit",
"authenticator",
"controllerManager",
"scheduler"
]
depends_on = [
aws_iam_role_policy_attachment.cluster_AmazonEKSClusterPolicy,
]
}
resource "aws_eks_node_group" "main" {
cluster_name = aws_eks_cluster.main.name
node_group_name = "main-nodes"
node_role_arn = aws_iam_role.node.arn
subnet_ids = aws_subnet.private[*].id
scaling_config {
desired_size = 3
max_size = 10
min_size = 1
}
instance_types = ["t3.medium"]
capacity_type = "ON_DEMAND"
update_config {
max_unavailable = 1
}
depends_on = [
aws_iam_role_policy_attachment.node_AmazonEKSWorkerNodePolicy,
aws_iam_role_policy_attachment.node_AmazonEKS_CNI_Policy,
aws_iam_role_policy_attachment.node_AmazonEC2ContainerRegistryReadOnly,
]
}
# EKS Add-ons
resource "aws_eks_addon" "ebs_csi" {
cluster_name = aws_eks_cluster.main.name
addon_name = "aws-ebs-csi-driver"
}
resource "aws_eks_addon" "coredns" {
cluster_name = aws_eks_cluster.main.name
addon_name = "coredns"
}
resource "aws_eks_addon" "kube_proxy" {
cluster_name = aws_eks_cluster.main.name
addon_name = "kube-proxy"
}
Google GKE: The Autopilot Revolution
# GKE Autopilot cluster
resource "google_container_cluster" "primary" {
name = "autopilot-cluster"
location = "us-central1"
# Autopilot mode
enable_autopilot = true
# Network configuration
network = google_compute_network.vpc.name
subnetwork = google_compute_subnetwork.subnet.name
# IP allocation for pods and services
ip_allocation_policy {
cluster_secondary_range_name = "k8s-pod-range"
services_secondary_range_name = "k8s-service-range"
}
# Security
private_cluster_config {
enable_private_nodes = true
enable_private_endpoint = false
master_ipv4_cidr_block = "172.16.0.0/28"
}
# Monitoring and logging
monitoring_config {
enable_components = ["SYSTEM_COMPONENTS", "WORKLOADS"]
}
logging_config {
enable_components = ["SYSTEM_COMPONENTS", "WORKLOADS"]
}
}
GKE Autopilot Benefits:
- No node management: Google handles all node operations
- Built-in security: Pod security standards enforced
- Cost optimization: Pay only for running pods
- Automatic scaling: Nodes scale based on pod requirements
Monitoring and Observability
The Modern Observability Stack
# Prometheus Operator
apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
name: prometheus
spec:
serviceAccountName: prometheus
serviceMonitorSelector:
matchLabels:
team: frontend
ruleSelector:
matchLabels:
prometheus: kube-prometheus
role: alert-rules
resources:
requests:
memory: 400Mi
retention: 30d
storage:
volumeClaimTemplate:
spec:
storageClassName: fast-ssd
resources:
requests:
storage: 50Gi
---
# Grafana Dashboard
apiVersion: v1
kind: ConfigMap
metadata:
name: grafana-dashboard
data:
kubernetes-cluster.json: |
{
"dashboard": {
"title": "Kubernetes Cluster Overview",
"panels": [
{
"title": "CPU Usage",
"type": "graph",
"targets": [
{
"expr": "sum(rate(container_cpu_usage_seconds_total[5m])) by (pod)",
"legendFormat": "{{pod}}"
}
]
},
{
"title": "Memory Usage",
"type": "graph",
"targets": [
{
"expr": "sum(container_memory_usage_bytes) by (pod)",
"legendFormat": "{{pod}}"
}
]
}
]
}
}
---
# AlertManager Configuration
apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
name: kubernetes-alerts
spec:
groups:
- name: kubernetes
rules:
- alert: PodCrashLooping
expr: rate(kube_pod_container_status_restarts_total[15m]) > 0
for: 5m
labels:
severity: warning
annotations:
summary: "Pod {{ $labels.pod }} is crash looping"
description: "Pod {{ $labels.pod }} in namespace {{ $labels.namespace }} is restarting frequently"
- alert: HighMemoryUsage
expr: (container_memory_usage_bytes / container_spec_memory_limit_bytes) * 100 > 90
for: 5m
labels:
severity: critical
annotations:
summary: "High memory usage detected"
description: "Container {{ $labels.container }} in pod {{ $labels.pod }} is using {{ $value }}% of its memory limit"
Distributed Tracing with Jaeger
# Jaeger deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: jaeger
spec:
replicas: 1
selector:
matchLabels:
app: jaeger
template:
metadata:
labels:
app: jaeger
spec:
containers:
- name: jaeger
image: jaegertracing/all-in-one:latest
ports:
- containerPort: 16686
- containerPort: 14268
env:
- name: COLLECTOR_ZIPKIN_HTTP_PORT
value: "9411"
Application instrumentation:
// Node.js application with OpenTelemetry
const { NodeSDK } = require('@opentelemetry/sdk-node');
const { getNodeAutoInstrumentations } = require('@opentelemetry/auto-instrumentations-node');
const { JaegerExporter } = require('@opentelemetry/exporter-jaeger');
const jaegerExporter = new JaegerExporter({
endpoint: 'http://jaeger:14268/api/traces',
});
const sdk = new NodeSDK({
traceExporter: jaegerExporter,
instrumentations: [getNodeAutoInstrumentations()],
});
sdk.start();
Cost Optimization Strategies
Resource Management
# Resource quotas and limits
apiVersion: v1
kind: ResourceQuota
metadata:
name: compute-quota
namespace: development
spec:
hard:
requests.cpu: "10"
requests.memory: 20Gi
limits.cpu: "20"
limits.memory: 40Gi
pods: "20"
persistentvolumeclaims: "10"
---
# Limit ranges
apiVersion: v1
kind: LimitRange
metadata:
name: default-limits
namespace: development
spec:
limits:
- default:
cpu: "200m"
memory: "256Mi"
defaultRequest:
cpu: "100m"
memory: "128Mi"
type: Container
Vertical Pod Autoscaling
apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
name: api-vpa
spec:
targetRef:
apiVersion: apps/v1
kind: Deployment
name: api
updatePolicy:
updateMode: "Auto"
resourcePolicy:
containerPolicies:
- containerName: api
maxAllowed:
cpu: 1
memory: 2Gi
minAllowed:
cpu: 100m
memory: 128Mi
Cluster Autoscaling
# Cluster Autoscaler configuration
apiVersion: apps/v1
kind: Deployment
metadata:
name: cluster-autoscaler
namespace: kube-system
spec:
replicas: 1
selector:
matchLabels:
app: cluster-autoscaler
template:
spec:
containers:
- image: k8s.gcr.io/autoscaling/cluster-autoscaler:v1.27.0
name: cluster-autoscaler
command:
- ./cluster-autoscaler
- --v=4
- --stderrthreshold=info
- --cloud-provider=aws
- --skip-nodes-with-local-storage=false
- --expander=least-waste
- --node-group-auto-discovery=asg:tag=k8s.io/cluster-autoscaler/enabled,k8s.io/cluster-autoscaler/production-cluster
- --balance-similar-node-groups
- --skip-nodes-with-system-pods=false
Security Best Practices
Pod Security Standards
# Pod Security Policy
apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
name: restricted
spec:
privileged: false
allowPrivilegeEscalation: false
requiredDropCapabilities:
- ALL
volumes:
- 'configMap'
- 'emptyDir'
- 'projected'
- 'secret'
- 'downwardAPI'
- 'persistentVolumeClaim'
runAsUser:
rule: 'MustRunAsNonRoot'
seLinux:
rule: 'RunAsAny'
fsGroup:
rule: 'RunAsAny'
---
# Network Policies
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: deny-all
namespace: production
spec:
podSelector: {}
policyTypes:
- Ingress
- Egress
---
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-frontend-to-api
namespace: production
spec:
podSelector:
matchLabels:
app: api
policyTypes:
- Ingress
ingress:
- from:
- podSelector:
matchLabels:
app: frontend
ports:
- protocol: TCP
port: 8080
Secret Management
# External Secrets Operator
apiVersion: external-secrets.io/v1beta1
kind: SecretStore
metadata:
name: aws-secrets-manager
spec:
provider:
aws:
service: SecretsManager
region: us-east-1
auth:
secretRef:
accessKeyID:
name: awssm-secret
key: access-key
secretAccessKey:
name: awssm-secret
key: secret-access-key
---
apiVersion: external-secrets.io/v1beta1
kind: ExternalSecret
metadata:
name: database-credentials
spec:
refreshInterval: 15s
secretStoreRef:
name: aws-secrets-manager
kind: SecretStore
target:
name: db-secret
creationPolicy: Owner
data:
- secretKey: password
remoteRef:
key: prod/database
property: password
The Alternative Orchestrators
HashiCorp Nomad: The Simple Alternative
# Nomad job specification
job "web-app" {
datacenters = ["dc1"]
type = "service"
group "web" {
count = 3
network {
port "http" {
static = 8080
}
}
service {
name = "web-app"
port = "http"
check {
type = "http"
path = "/health"
interval = "10s"
timeout = "3s"
}
}
task "app" {
driver = "docker"
config {
image = "web-app:v1.0.0"
ports = ["http"]
}
resources {
cpu = 500
memory = 256
}
}
}
}
Nomad's advantages:
- Simplicity: Single binary, easy to operate
- Multi-workload: Containers, VMs, Java apps
- Resource efficiency: Less overhead than Kubernetes
- HashiCorp integration: Works with Vault, Consul
AWS ECS/Fargate: The Managed Alternative
# ECS Task Definition
{
"family": "web-app",
"networkMode": "awsvpc",
"requiresCompatibilities": ["FARGATE"],
"cpu": "256",
"memory": "512",
"executionRoleArn": "arn:aws:iam::123456789012:role/ecsTaskExecutionRole",
"taskRoleArn": "arn:aws:iam::123456789012:role/ecsTaskRole",
"containerDefinitions": [
{
"name": "web",
"image": "web-app:v1.0.0",
"portMappings": [
{
"containerPort": 8080,
"protocol": "tcp"
}
],
"environment": [
{
"name": "NODE_ENV",
"value": "production"
}
],
"secrets": [
{
"name": "DATABASE_URL",
"valueFrom": "arn:aws:secretsmanager:us-east-1:123456789012:secret:prod/database-abc123"
}
],
"logConfiguration": {
"logDriver": "awslogs",
"options": {
"awslogs-group": "/ecs/web-app",
"awslogs-region": "us-east-1",
"awslogs-stream-prefix": "ecs"
}
}
}
]
}
The Decision Framework
When to Choose Kubernetes
✅ Choose Kubernetes when:
- Multi-cloud strategy required
- Complex networking requirements
- Large development teams
- Need for extensive customization
- Long-term strategic investment
❌ Avoid Kubernetes when:
- Simple single-service applications
- Small teams without DevOps expertise
- Tight budget constraints
- Rapid prototyping needs
When to Choose Alternatives
Nomad: Simpler operations, mixed workloads, HashiCorp ecosystem ECS/Fargate: AWS-only, managed service preference, simpler applications Docker Swarm: Legacy applications, very simple orchestration needs
The Future of Container Orchestration
Serverless Containers
# AWS Fargate Spot with EKS
apiVersion: apps/v1
kind: Deployment
metadata:
name: batch-processor
spec:
replicas: 10
template:
spec:
nodeSelector:
eks.amazonaws.com/capacityType: SPOT
tolerations:
- key: eks.amazonaws.com/capacityType
operator: Equal
value: SPOT
effect: NoSchedule
containers:
- name: processor
image: batch-processor:latest
resources:
requests:
cpu: 2
memory: 4Gi
Edge Computing Integration
# K3s edge deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: edge-app
spec:
replicas: 1
template:
spec:
nodeSelector:
node-type: edge
containers:
- name: app
image: edge-app:latest
resources:
requests:
cpu: "100m"
memory: "128Mi"
limits:
cpu: "200m"
memory: "256Mi"
AI/ML Workload Optimization
# GPU node pool for ML workloads
apiVersion: v1
kind: Node
metadata:
labels:
node-type: gpu
gpu-type: nvidia-t4
spec:
taints:
- key: nvidia.com/gpu
value: "true"
effect: NoSchedule
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: ml-training
spec:
template:
spec:
nodeSelector:
gpu-type: nvidia-t4
tolerations:
- key: nvidia.com/gpu
operator: Equal
value: "true"
effect: NoSchedule
containers:
- name: trainer
image: ml-trainer:latest
resources:
limits:
nvidia.com/gpu: 1
Getting Started: Your Orchestration Journey
Phase 1: Local Development (Week 1-2)
# Start with local Kubernetes
# Docker Desktop or minikube
minikube start
kubectl create deployment hello-world --image=nginx
kubectl expose deployment hello-world --port=80 --type=NodePort
kubectl get services
Phase 2: Production Basics (Month 1)
# Basic application deployment
apiVersion: apps/v1
kind: Deployment
metadata:
name: my-app
spec:
replicas: 3
selector:
matchLabels:
app: my-app
template:
metadata:
labels:
app: my-app
spec:
containers:
- name: app
image: my-app:v1.0.0
ports:
- containerPort: 8080
resources:
requests:
memory: "128Mi"
cpu: "100m"
limits:
memory: "256Mi"
cpu: "200m"
Phase 3: Advanced Patterns (Month 2-3)
- Helm charts and package management
- GitOps with ArgoCD
- Service mesh implementation
- Monitoring and observability
- Security and compliance
The Bottom Line
Container orchestration has evolved from a complex, experts-only technology to an accessible platform that enables teams to build and operate applications at scale. Kubernetes won because it became the standard, not because it's perfect.
The modern reality:
- Managed services handle the complexity
- Better tooling simplifies operations
- GitOps makes deployments reliable
- Service mesh handles networking
- Cloud integration provides scalability
The question isn't whether you should use container orchestration—it's which level of abstraction fits your team and requirements. Whether you choose managed Kubernetes, Nomad, or ECS/Fargate, the benefits of declarative infrastructure, automatic scaling, and robust deployment patterns are too significant to ignore.
Container orchestration stopped being scary when we stopped trying to manage everything ourselves and started using the right abstractions for our needs. The technology finally matches the promise, and the tooling finally makes it accessible.
This article was written while running applications on three different Kubernetes clusters across AWS, Google Cloud, and Azure, managed through GitOps workflows that automatically sync changes from Git repositories. The infrastructure truly has become code, and the code has become much more manageable.
Add Comment
No comments yet. Be the first to comment!